Growth of Generating Sets of Direct Powers

Nik Ruskuc
nik@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

Glasgow, 30 September 2009
Theorem. (E.F. Robertson, NR, J. Wiegold, 1998)
Let S and T be two infinite semigroups. The direct product $S \times T$ is finitely presented if and only if it is finitely generated and both S and T are stable.

A mini-quiz: \(d(A_5), d(S_5) \)

Definition

The **rank** of an algebraic structure \(A \) is the smallest number of generators needed to generate \(A \); it is denoted \(d(A) \).

<table>
<thead>
<tr>
<th>(G)</th>
<th>(d(G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_5)</td>
<td>2</td>
</tr>
<tr>
<td>(A_5)</td>
<td>2</td>
</tr>
<tr>
<td>(S_5 \times S_5)</td>
<td>2</td>
</tr>
<tr>
<td>(A_5 \times A_5)</td>
<td>2</td>
</tr>
<tr>
<td>(S_5 \times S_5 \times S_5)</td>
<td>3</td>
</tr>
<tr>
<td>(A_5 \times A_5 \times A_5)</td>
<td>2</td>
</tr>
</tbody>
</table>

Facts

\(d(A_5^{19}) = 2, \ d(A_5^{20}) = 3. \) (P. Hall in 1936)
The \(d\)-sequence

Definition
The \textit{d-sequence} of an algebraic structure \(A\) is

\[
d(A) = (d(A), d(A^2), d(A^3), \ldots).
\]

Some basic properties:

\begin{itemize}
 \item \(d(A)\) is non-decreasing.
 \item \(d(A)\) is bounded above by \(|A|^n\).
 \item Often \(d(A \times B) \leq d(A) + d(B)\), in which case \(d(A)\) is bounded above by a linear function.
\end{itemize}
Pozzo and Vladimir Introduce Types of Growth

Very, very good

Good

Middling

Poor

Positively bad

Constant

Logarithmic

Linear

Exponential

∞
Examples

- **Cyclic groups:** $d(C_n) = (1, 2, 3, 4, \ldots)$ (middling).
- Alternating groups: $d(A_5) = (2, \ldots, 2, 3, \ldots, 3, 4, \ldots)$

 (Hall 1936, good).
- **Zero semigroup:** $d(Z_2) = (1, 3, 7, 15, \ldots)$ (poor).
- **Positive integers:** $d(\mathbb{N}) = (1, \infty, \infty, \ldots)$ (positively bad 😞)
J Wiegold: \textbf{d}-sequences of groups

For a non-trivial group G:

- $d(G)$ is linear if G is non-perfect. (middling)
- $d(G)$ is logarithmic if G is finite and perfect. (Good) 😊
- $d(G)$ is eventually constant if G is infinite simple. (very, very good)
- $d(G)$ is bounded above by a logarithmic function if G is infinite and perfect.
We begin with a technical lemma whose proof is easier to describe on a blackboard than it is to consign to print. (J Wiegold, 1978)
Functional completeness

Definition
An algebraic structure \(A \) is functionally complete if every function \(A^n \to A \) can be expressed in terms of the basic operations and elements of \(A \).

Example
The boolean algebra \(\{0, 1\} \) is functionally complete.

Example
The cyclic group \(\mathbb{Z}_2 = \{0, 1\} \) is not functionally complete.

Theorem (MR Quick, NR)
If \(A \) is finite functionally complete then \(d(A) \) is logarithmic.
Functionally complete classical structures

Definition
Classical structures: groups, rings, modules, algebras, Lie algebras.

Theorem (various authors)
Functionally complete finite classical structures are: non-abelian simple groups, simple rings with identity, simple algebras with identity, non-abelian simple Lie algebras.

Corollary
All of the above have logarithmic d-sequences.
A dichotomy theorem from Universal Algebra

Definition
Polynomial equivalence: \(A, B \) are polynomially equivalent if and only if every operation of \(A \) can be expressed in terms of operations and elements of \(B \), and vice versa.

Theorem (Werner; Herrmann; MR Quick, NR)
A finite simple algebraic structure \(A \) in a congruence permutable equational class is either:
- functionally complete, in which case \(d(A) \) is logarithmic; or
- polynomially equivalent to a simple module over a finite ring with 1, and \(d(A) \) is linear.
Theorem (MR Quick, NR)

The \(d \)-sequence of a finite non-trivial classical structure grows either logarithmically or linearly. Those with logarithmic growth are:

- perfect groups,
- rings with 1,
- algebras with 1,
- perfect Lie algebras.

Remark

Jump from simple to arbitrary requires more work, and a generalisation of a lovely old trick of Gaschütz, for lifting generating sets to pre-images.
The perfect parallel with groups continues:

- Simple structures have eventually constant d-sequences. (Interpolation replaces functional completeness here.)
- Perfect groups and Lie algebras, rings and algebras with identity – logarithmic upper bound.
- At worst: linear.

Question

Is the identity element necessary for a good growth? Does there exist a finitely generated infinite simple ring without identity?

Theorem

For a finite (non-group) semigroup S we have:

- $d(S)$ is linear if S is a monoid.
- otherwise $d(S)$ is exponential.
Polycyclic monoid

Definition

\[P_k = \langle b_i, c_i \mid i = 1, \ldots, k \rangle \mid b_i c_i = 1, \ b_i c_j = 0 (i \neq j) \rangle \]

Fact

\(P_k (k \geq 2) \) is an infinite, congruence-free monoid.

Theorem (St Andrews Summer School 2008)

\[d(P_k) = (2k - 1, 3k - 1, 4k - 1, \ldots). \]
Theorem (EF Robertson, NR, J Wiegold)

Let S, T be two infinite semigroups. $S \times T$ is finitely generated if and only if S and T are finitely generated and neither has indecomposable elements, in which case

$$d(S \times T) \leq 4d(S)d(T).$$

Corollary

If $d(S^2) < \infty$ then all S^n are finitely generated, and $d(S)$ grows exponentially at worst.
Cyclic diagonal acts

Definition
A semigroup S is said to have cyclic diagonal bi-acts if for every $n \geq 1$ there exist $a_1, \ldots, a_n \in S$ such that

$$\{(sa_1t, \ldots, sa_nt) : s, t \in S^1\} = S^n.$$

Theorem
If S has cyclic diagonal bi-acts then

$$d(S^n) \leq d(S) + 1,$$

and so $d(S)$ is eventually constant.

Theorem (St Andrews Summer School 2008)
For the monoid R_N of all partially recursive functions in one variable we have

$$d(R_N) = (2, 2, 2, \ldots).$$
A semigroup without identity (after Byleen 1990)

\[A = \{a_1, a_2, \ldots\}, \ B = \{b_1, b_2, \ldots\} \] – two infinite alphabets.

Let \(P = (p_{ab})_{A \times B} \) be a matrix over \(A \cup B \cup \{0\} \) such that:

- Every collection of rows or columns contains every possible tuple infinitely often.
- \(p_{a_i, b_i} = b_{i+1}, \ p_{a_i, b_{i+1}} = a_{i+1} \).

Define \(S = \langle A, B \mid ab = p_{a,b} \rangle \).
A semigroup without identity

\[S = \langle A, B \mid ab = p_{a,b} \rangle. \]

Theorem (MR Quick, NR)

\(S \) has the following properties:

- it is a congruence free semigroup with 0 but with no identity;
- it is finitely generated;
- it has cyclic diagonal bi-acts.

Corollary

There exists an infinite semigroup \(S \) without identity for which \(d(S) \) is eventually constant.

Corollary

There exists an infinite semigroup \(S \) without identity for which \(d(S) \) is (a) logarithmic; (b) linear.
A ring without identity

\[S = \langle A, B \mid ab = p_{a,b} \rangle. \]

\[R = \mathbb{Z}_2 S / \{0, 1 \cdot 0\}. \]

Theorem (MR Quick, NR)

\(R \) is a finitely generated infinite simple ring without identity, and \(d(R) \) is eventually constant.
Two-element structures

Post (1941) described all 2-element algebraic structures:

- 14 algebras with basic operations of arity \(\leq 2 \).
- 9 algebras with basic operations of arity \(\leq 3 \), with at least one ternary operation.
- Four countably infinite, 1-parameter, families of structures involving higher arities.

Theorem (St Andrews Summer School 2009)

If \(A \) is a two-element algebraic structure then \(d(A) \) is either logarithmic or linear or exponential.

Remark (Agoston et al. 1986)

There are uncountably many inequivalent algebraic structures on a 3-element set.
Post's Lattice
A selection of problems

▶ Does there exist an infinite simple group G and $n > 1$ such that $d(G^n) \neq d(G)$. (One wonders whether or not these results reflect a general truth about infinite simple groups., J Wiegold 1978)

▶ If G is an infinite perfect group without finite non-trivial images, is it always the case that $d(G)$ is eventually constant? (The most important and apparently quite unattackable problem... J Wiegold, 1989)

▶ The analogous questions for rings, algebras and Lie algebras.

▶ Is it true that for every finite structure A, the d-sequence is either logarithmic, linear or exponential?

▶ Does there exist a semigroup S for which the growth of $d(S)$ is strictly between (a) constant and logarithmic? (b) logarithmic and linear? (c) linear and exponential?
Future Directions

- Other structures: lattices, tournaments, Steiner triple systems (A Geddes, MR Quick, NR).
- Other constructions: wreath products (M Neunhöffer, MR Quick, NR).
- Number of relations; higher homological invariants.