Ranks of Semigroups

Nik Ruškuc
nik@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

Lisbon, 24 May 2012
...the word “mathematical” stems from the Greek expression *ta mathemata*, which means what can be learned and thus, at the same time, what can be taught; ...

Teaching therefore does not mean anything else then to let others learn, that is, to bring one another to learning.

(M. Heidegger)
John Howie on Generators and Ranks

Products of idempotents in T_X: finite X

T_X – the full transformation semigroup.

$E_X = E(T_X)$ – the idempotents of T_X.

Theorem

If $X = \{1, \ldots, n\}$ then

$$\langle E_X \rangle = \text{Sing}_X = \{ \alpha : |\text{im}(\alpha)| < n \}.$$
Products of idempotents in T_X: infinite X

$S(\alpha) = \{x \in X : x\alpha \neq x\}; \quad s(\alpha) = |S(\alpha)| – \text{shift.}$

$Z(\alpha) = X \setminus X\alpha; \quad z(\alpha) = |Z(\alpha)| – \text{defect.}$

$C(\alpha) = \bigcup\{x\alpha^{-1} : |x\alpha^{-1}| \geq 2\}; \quad c(\alpha) = |C(\alpha)| – \text{collapse.}$

Theorem

If X is infinite then

$$\langle E_X \rangle = \{\alpha : s(\alpha) < \infty, z(\alpha) > 0\} \cup \{\alpha : s(\alpha) = z(\alpha) = c(\alpha) \geq \aleph_0\}.$$
Vista

- Clear finite/infinite separation;
- numbers of generators;
- lengths of products;
- other semigroups (e.g. $K(n, r)$, O_X).
Rank: full transformations

\[\text{rank}(S) = \min \{|A| : \langle A \rangle = S \}. \]

\[\text{idrank}(S) = \min \{|A| : A \subseteq E(S), \langle A \rangle = S \}. \]

Theorem (Gomes, Howie '87)
\[\text{rank}(\text{Sing}_n) = \text{idrank}(\text{Sing}_n) = \frac{n(n - 1)}{2}. \]

\[K(n, r) = \{ \alpha \in T_n : |\text{im}\alpha| \leq r \}. \]

Theorem (McFadden, Howie '90)
\[\text{rank}(K(n, r)) = \text{idrank}(K(n, r)) = S(n, r), \text{ the Stirling number}. \]

Remark
\[S(n, r) = \text{number of } \mathcal{R}-\text{classes in the } \mathcal{D}-\text{class} \{ \alpha : |\text{im}(\alpha)| = r \}. \]
Rank: order preserving transformations

\(O_n = \) order preserving transformations of \(\{1, \ldots, n\} \).

Theorem
\[\text{rank}(O_n) = n, \text{idrank}(O_n) = 2n - 2. \]

Remark
The top \(J \)-class of \(O_n \) has \(n - 1 \) \(R \)-classes and \(n \) \(L \)-classes.

\(PO_n = \) partial order preserving transformations of \(\{1, \ldots, n\} \).

Theorem
\[\text{rank}(PO_n) = 2n - 1, \text{idrank}(O_n) = 3n - 2. \]

Remark
The top \(J \)-class of \(PO_n \) has \(2n - 1 \) \(R \)-classes and \(n \) \(L \)-classes.
Often $\text{rank}(S) = \text{rank}(P)$, where P is the principal factor corresponding to a unique maximal \mathcal{J}-class. Why?

Often $\text{rank}(P) = \max(|P/\mathcal{L}|, |P/\mathcal{R}|)$. Why?

Sometimes $\text{rank}(S) = \text{idrank}(S)$. Why?

How to find the rank of a general completely 0-simple semigroup?
Completely 0-simple semigroups: connected case

$S = \mathcal{M}^0[G; I, \Lambda; P]$ – a Rees matrix semigroup.

Bipartite graph $\Gamma(P)$: $V = I \cup \Lambda$; $i \sim \lambda \iff p_{\lambda i} \neq 0$.

$H = a$ subgroup of G depending on P and Γ.

$H \neq \langle \{ p_{\lambda i} : \lambda \in \Lambda, \ i \in I \} \setminus \{0\} \rangle$.

Relative rank: $\text{rank}(G : H) = \min \{ A : \langle H \cup A \rangle = G \}$.

Theorem (NR ’94)

If Γ is connected then

$$\text{rank}(S) = \max(|I|, |\Lambda|, \text{rank}(G : H)).$$

Corollary

If S is completely simple then

$$\text{rank}(S) = \max(|I|, |\Lambda|, \text{rank}(G : H)),$$

where $H = \langle p_{\lambda i} : \lambda \in \Lambda, \ i \in I \rangle$.
Completely 0-simple semigroups: general case

\(S = \mathcal{M}^0[G; I, \Lambda; P] \) – a Rees matrix semigroup.

Connected components: \(I_1 \cup \Lambda_1, \ldots, I_k \cup \Lambda_k \).

\(H_i \) = subgroups of \(G \) depending on \(P \) and \(\Gamma \) (\(i = 1, \ldots, k \)).

Theorem (Gray, NR ’05)

\[
\text{rank}(S) = \max(|I|, |\Lambda|, r + k - 1),
\]

where

\[
r = \min\{\text{rank}(G : \bigcup_{i=1}^{k} g_i^{-1}H_ig_i) : g_i \in G\}.
\]
Vista

- Gray '08: A combinatorial condition (Hall-like) for $\text{rank}(S) = \text{idrank}(S)$ (S completely simple).
- Ideas of connectedness.
- Recent work on free idempotent generated semigroups Gray, Dolinka, NR.
- Semigroups of high rank (Giraldes, Howie '85).
- Different notions of rank (Ribeiro, Howie '99, '00).
Depth in infinite semigroups

Depth of S **w.r.t. generating set** A

= smallest n such that $S = \bigcup_{i=1}^{n} A^n$.

Recall: $\langle E_X \rangle = F_X \cup (\bigcup_{\aleph_0 \leq m \leq |X|} Q_m)$, where $F = \{\alpha : s(\alpha) < \infty, \ d(\alpha) > 0\}$, $Q_m = \{\alpha : s(\alpha) = z(\alpha) = c(\alpha) = m\}$.

Theorem

(i) $\text{Depth}(\langle E_X \rangle) = \text{Depth}(F) = \infty$;

(ii) $\text{Depth}(Q_m) = \text{Depth}(\langle E_X \rangle \setminus F) = 4$.
Relative ranks in infinite semigroups

Theorem

\[\text{rank}(T_X : S_X) = 2. \]

\(K(\alpha) = \{ x \in X : |x\alpha^{-1}| = |X| \}; \ k(\alpha) = |K(\alpha)| \) – infinite contraction index.

Theorem

\(\langle S_X, \mu, \nu \rangle = T_X \) iff \(\mu \) is an injection with \(d(\mu) = |X| \) and \(\nu \) is a surjection with \(k(\nu) = |X| \) (or v.v.).

Theorem

\[\text{rank}(T_X : \langle E(T_X) \rangle) = 2. \]
Relative ranks in infinite semigroups

Theorem (Sierpiński ’35)

For any $\tau_1, \tau_2, \cdots \in T_X$ there exist $\mu, \nu \in T_X$ such that $\tau_i \in \langle \mu, \nu \rangle$.

Corollary

For every $S \leq T_X$ either $\text{rank}(T_X : S) \leq 2$ or else $\text{rank}(T_X : S)$ is uncountable.

- Analogous results hold for: S_X (Galvin ’95), B_X, I_X.
- $\text{rank}(B_X : T_X) = \text{rank}(B_X : I_X) = \text{rank}(T_N : O_N) = 1$.
- $\text{rank}(B_X : S_X) = \text{rank}(B_X : \text{Surj}_X) = \text{rank}(B_X : \text{Inj}_X) = 2$.

Further work: J.D. Mitchell, M. Morayne, Y. Peresse, J. Cichon, M. Quick, P. Higgins, NR.
Sierpinski rank

Definition
The Sierpinski rank of S is the smallest number \(n \) such that for any \(s_1, s_2, \ldots \in S \) there exist \(a_1, \ldots, a_n \in S \) such that \(s_i \in \langle a_1, \ldots, a_j \rangle \).

Proposition
\[
\text{srank}(S_X) = \text{srank}(T_X) = \text{srank}(I_X) = \text{srank}(P_X) = \text{srank}(B_X) = 2.
\]

Theorem (Peresse ’09)
\[
\text{srank}(\text{Inj}_X) = \begin{cases}
 n + 4 & \text{if } |X| = \aleph_n \\
 \infty & \text{otherwise.}
\end{cases}
\]

Theorem (Mitchell, Peresse ’11)
\[
\text{srank}(\text{Surj}_X) = \begin{cases}
 \frac{n^2 + 9n + 14}{2} & \text{if } |X| = \aleph_n \\
 \infty & \text{otherwise.}
\end{cases}
\]
Bergman property

Definition

S has Bergman property if it has finite depth w.r.t. every generating set.

Theorem (Bergman ’06)

S_X has Bergman property.

Theorem

T_X, P_X, I_X, B_X all have Bergman property.

Theorem

The finitary power semigroup of I_X has Bergman property, but those of T_X, P_X, B_X do not.
d-sequences and relative rank

NR, Quick, Geddes, Hyde, Wallis, Loughlin, Carey, Awang, McLeman, Garrido.

\[d_i = \text{rank}(S^i) \text{ (direct power)}. \]
\[d(S) = (d_1, d_2, d_3, \ldots). \]

Relate asymptotic properties of $d(S)$ and algebraic properties of S.

\[\Delta_n(S) = \{(s, \ldots, s) : s \in S\} \leq S^n. \]
\[\overline{d}_i = \text{rank}(S^n : \Delta_n(S)). \]
\[\overline{d}(S) = (\overline{d}_1, \overline{d}_2, \overline{d}_3, \ldots). \]

Proposition
\[d(S) \sim \overline{d}(S). \]
Thank you