One Relation Semigroups

Nik Ruskuc
nik@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

NBSAN, York, 28 January 2009
Open Problem

Is the word problem soluble for every semigroup given by a single defining relation:

\[\langle a_1, \ldots, a_n \mid u = v \rangle? \]
Presentations

$$\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle$$
The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_n, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else).

How to think about S: elements are words over $\{a_1, \ldots, a_n\}$; some words are equal; two words are equal iff their equality is a consequence of the defining relations.

Example $S = \langle a, b | ba = a^2b \rangle$. Every word is equal to one of the form $a^i b^j$.

Presentations

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle \]

letters/generators
The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_n, in which these generators satisfy all relations $u_1 = v_1, \ldots, u_m = v_m$ (and their consequences, but nothing else).

How to think about S: elements are words over \{ a_1, \ldots, a_n \}; some words are equal; two words are equal iff their equality is a consequence of the defining relations.

Example $S = \langle a, b \mid ba = a^2 b \rangle$. Every word is equal to one of the form $a_i b_j$.

Nik Ruskuc: Residual Finiteness
Presentations

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle \]

letters/generators \hspace{1cm} words/defining relations

The semigroup \(S \) defined: the largest/free-est semigroup generated by (copies of) \(a_1, \ldots, a_k \), in which these generators satisfy all relations \(u_j = v_j \) (and their consequences, but nothing else).

How to think about \(S \): elements are words over \(\{a_1, \ldots, a_n\} \); some words are equal; two words are equal iff their equality is a consequence of the defining relations.
The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_k, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else).

How to think about S: elements are words over \{a_1, \ldots, a_n\}; some words are equal; two words are equal iff their equality is a consequence of the defining relations.
Presentations

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle \]
letters/generators words/defining relations

The semigroup \(S \) defined: the largest/free-est semigroup generated by (copies of) \(a_1, \ldots, a_k \), in which these generators satisfy all relations \(u_j = v_j \) (and their consequences, but nothing else).

How to think about \(S \): elements are words over \(\{a_1, \ldots, a_n\} \); some words are equal; two words are equal iff their equality is a consequence of the defining relations.

Presentations

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle\]

letters/generators \hspace{1cm} words/defining relations

The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_k, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else).

How to think about S: elements are words over \{a_1, \ldots, a_n\}; some words are equal; two words are equal iff their equality is a consequence of the defining relations.
The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_k, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else). How to think about S: elements are words over $\{a_1, \ldots, a_n\}$; some words are equal; two words are equal iff their equality is a consequence of the defining relations.
Presentations

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle \]

letters/generators \hspace{1cm} words/defining relations

The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_k, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else).

How to think about S: elements are words over \{a_1, \ldots, a_n\}; some words are equal; two words are equal iff their equality is a consequence of the defining relations.
The semigroup S defined: the largest/free-est semigroup generated by (copies of) a_1, \ldots, a_k, in which these generators satisfy all relations $u_j = v_j$ (and their consequences, but nothing else).

How to think about S: elements are words over \{a_1, \ldots, a_n\}; some words are equal; two words are equal iff their equality is a consequence of the defining relations.

Example

$S = \langle a, b \mid ba = a^2 b \rangle$. Every word is equal to one of the form $a^i b^j$.

\[\langle a_1, \ldots, a_n \mid u_1 = v_1, \ldots, u_m = v_m \rangle \]

letters/generators \hspace{1cm} words/defining relations
Word Problem

Definition
A semigroup S with a finite generating set A has a **soluble word problem** if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of S.

Example
$S = \langle a, b \mid ba = a^2b \rangle$. One can show: $a^i b^j = a^k b^l$ in S $\iff i = k$ and $j = l$.

Algorithm for solving the word problem: Given two words w_1, w_2 transform them into $a^i b^j, a^k b^l$ and then test whether $i = k$ and $j = l$.

Nik Ruskuc: Residual Finiteness
Definition
A semigroup S with a finite generating set A has a soluble word problem if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of S.

Example
$S = \langle a, b \mid ba = a^2 b \rangle$. One can show:

$$a^i b^j = a^k b^l \text{ in } S \iff i = k \& j = l.$$

Algorithm for solving the word problem: Given two words w_1, w_2 transform them into $a^i b^j, a^k b^l$ and then test whether $i = k$ and $j = l$.
Brief Early History and Context

- 1900 – Hilbert’s 10th Problem: *Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.*
Brief Early History and Context

- 1900 – Hilbert’s 10th Problem: *Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.*
- 1912 – Dehn: formulation of the word problem for groups
- 1931 – Gödel: incompleteness theorems for 1st order theories
- 1932 – Magnus: word problem for one-relator groups
- 1947 – Markov, Post: finitely presented semigroups with insoluble word problems
- 1951 – Markov: undecidability galore
- 195? – Novikov, Britton, Boone: finitely presented groups with insoluble word problems
- 1979 – Matiyasevich: negative solution to Hilbert’s 10th Problem
Approaches

- Play with words (pages of induction 😕)
- Delegate (embeddings)
- Take apart (structure)
- Look at something else (other properties)
Embedding
Embedding

Theorem (Magnus 1932)

Every group defined by a single relation has a soluble word problem.
Embedding

Theorem (Magnus 1932)

Every group defined by a single relation has a soluble word problem.

Theorem (Adyan 1966)

If u and v are non-empty words which have different first letters and different last letters then the semigroup defined by $\langle a_1, \ldots, a_n \mid u = v \rangle$ embeds into the group with the same presentation, and hence has a soluble word problem.
Embedding

Theorem (Magnus 1932)

Every group defined by a single relation has a soluble word problem.

Theorem (Adyan 1966)

If u and v are non-empty words which have different first letters and different last letters then the semigroup defined by \(\langle a_1, \ldots, a_n \mid u = v \rangle \) embeds into the group with the same presentation, and hence has a soluble word problem.

Remark

Some descendants:

- Diagrams (Remmers 1971, 1980) and pictures (Pride 1993)
- Small overlap semigroups (Remmers)
- Applications: Kashintsev, Guba, Howie, Pride, Jackson,...
Other Types of Semigroups

Theorem (Adjan, Oganessian 1987)

One relation problem can be reduced to presentations of the type:

\[
\langle a, b \mid aua = avb, \rangle, \quad \langle a, b \mid a = avb \rangle
\]

Corollary

If every one relation right cancellative semigroup has a soluble word problem then every one relation semigroup has a soluble word problem.

Corollary (Ivanov, Margolis, Meakin 2001)

If every one relation inverse semigroup has a soluble word problem then every one relation semigroup has a soluble word problem.
Other Types of Semigroups

Theorem (Silva 1993)

One relation Clifford semigroups have a soluble word problem.

Question
How about completely regular semigroups?
Syntactical Approach: Special Monoids

Theorem (Adjan 1966)

Let S be the monoid defined by

$$\langle a_1, \ldots, a_n \mid u = 1 \rangle.$$

The group of units is one relator (but not necessarily same presentation). The semigroup S has a soluble word problem.

Remark

See Zhang (1992) for a short proof and generalisation.
Magnus’s treatment of one relator groups: Freiheitssatz, ‘large’ subgroup, decompose into a product of free and/or ‘smaller’ one-relator groups.

Theorem (Semigroup Freiheitssatz; Squier, Wrathall 1983)

Let $S = \langle a_1, \ldots, a_n \mid u = v \rangle$ be a one relation semigroup, and suppose that a_1 appears in u or v. Then the subsemigroup of S generated by $\{a_2, \ldots, a_n\}$ is free.

Problem

- Investigate ‘large’ subsemigroups of one relation monoids.
- Candidates for large: $S \setminus \{a_1\}; \; S \setminus \langle a_1 \rangle; \ldots$
- Is there a natural decomposition?
- Do Rees index (Ruskuc 1998) or Green index (Gray, Ruskuc, to appear) help?
Other Properties

Investigate other structural, algebraic, combinatorial properties of one relation semigroups.

- Lallement 1974 – residual finiteness, idempotents
- Oganessian 1984 – isomorphism problem

A recent article:

What if it isn’t true?

Theorem (Matiyasevich 1967)
There exists a semigroup with three defining relations which has an insoluble word problem.

Theorem (Ivanov, Margolis, Meakin 2001)
Let S be the inverse monoid defined by $\langle A \mid u = 1 \rangle$, where w is a cyclically reduced word over $A \cup A^{-1}$. Let G be the group defined by the same presentation, and let P be the submonoid of G generated by all the prefixes of u. Then S has a soluble word problem if and only if the membership problem for P is soluble.
P.S. Acknowledgement

I would like to thank Grigor Oganessian for pointing out some inaccuracies in my original presentation.